
Distributed Authorization with 
Open Policy Agent

Anders Eknert



Anders Eknert
● Developer advocate at 

● Software development

● Background in identity systems

● Three years into OPA

● Cooking and food

● Football

anderseknert

anderseknert

anderseknert

anderseknert@hachyderm.io



Problem:
How do we do authorization in 

distributed APIs?



Answer:
It’s complicated



The evolution of identity



From monolith

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



To microservices

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



To microservices

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



The evolution of identity

Application

Data

Permissions

Users

credentials

● The application handles everything - including authentication and access control. The user 
authenticates in the application, a session is established, access control performed in code, 
commonly with a database serving permission data.

● In the distributed application, authentication is delegated elsewhere.

● But up until now, access control has remained pretty much the same,
in code, with a database serving permission data per request.

Monolith architecture



The evolution of identity

Service

Users Permissions

Service Service Service Service

Data

Service

DataData

credentials

credentials

credentials credentials credentials credentials

Naive monolith architecture using microservices



The evolution of identity

Service

Users Permissions

Service Service Service Service

Data

Service

DataData

credentials

credentials

credentials credentials credentials credentials

Naive monolith architecture using microservices



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

credentials

Slightly less naive monolith architecture using microservices

Rather than passing around credentials, we exchange them for tokens 



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

Slightly less naive monolith architecture using microservices

Everyone wants a token!



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

Slightly less naive monolith architecture using microservices

So.. how are these tokens obtained?



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

Slightly less naive monolith architecture using microservices



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

OAuth2

Defines a set of flows for users (interactive flows) and clients (non-interactive) to authenticate 
at the authorization server in order to obtain access tokens for use as credentials to services.

Does not detail what an access token should look like.

Despite labeled an “authorization framework” provides little in terms of authorization - rather about 
delegation.

Scopes provide basic boundaries for where an access token may be used.

Commonly used for external identity providers, “social login”, etc.



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token



The evolution of identity

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

token token token

token
token

token token

JSON Web Tokens (JWTs)

A JWT is a signed self-contained collection of claims, i.e. attributes claimed to be true.

Tokens are created by an issuer. Claims often (but not always) provided by the backing identity provider.

Expiry time (and other standard attributes) of JWT included in payload.

JWTs are immutable - no claim may be changed without breaking signature verification.

JWTs are everywhere - libraries for both encoding and decoding available for all languages and platforms.



Distributed identity, solved ☑

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens



Great, now do authorization



The evolution of access control



Distributed Authorization?

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Naive model — authorization logic 
embedded in application code, querying 

database for permissions



So, where should we do 
authorization?



Gateway Model

Gateway

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Authorization performed at perimeter of 
environment

● Fast!
● Single point of failure
● Insecure
● External dependency



Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Authorization — just like identity — must 
be verified in each service. Make no 

assumptions.

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic



Great, we’re back where we started



Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens

How do we make it better?

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic



Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Remove online dependency for 
permissions data, store copy in 

applications

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic



Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Authorization still hardcoded in applications 
— changes are cumbersome, coordination 
between teams required, very hard to audit

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic



Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens



● Open source general purpose policy engine

● Unified toolset and framework for policy across the stack

● Decouples policy from application logic

● Separates policy decision from enforcement

● Policies written in declarative language Rego

● Popular use cases ranging from kubernetes admission 

control, microservice authorization, infrastructure, data source 

filtering, to CI/CD pipeline policies and many more.





Policy decision model

Service

OPA

Policy 
(Rego)

Data
(JSON)

Request

Policy
Decision

Policy
Query

Input can be ANY JSON value Output can be ANY JSON value

Request

Policy
Decision

Linux PAM



Deployment model

● OPA runs as a lightweight self-contained server binary

● OPA ideally deployed as close to service as possible. This usually means running on the same host, 
either as a daemon or in a sidecar deployment

● Applications communicate with the OPA server through its REST API

● Go library available for Go applications

● Envoy/Istio based applications. Wasm, Intermediate Representation (IR), more...



Policy authoring and Rego
● Rego — declarative high-level policy language used by OPA.

● Policy consists of any number of rules.

● Rules commonly return true/false but may return any

type available in JSON, like strings, lists and objects.

● Policy testing is easy with provided unit test framework.

● Well documented! https://www.openpolicyagent.org/docs/latest/

● Try it out! https://play.openpolicyagent.org/

https://www.openpolicyagent.org/docs/latest/
https://play.openpolicyagent.org/


Zero Trust Model

Service

Users

Permissions

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens Decisions delegated to OPA — unified 
authorization across the stack, with policy 

decoupled from application logic

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic



Distributed authorization, solved ☑

Service

Users

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens

Permissions

Control 
Plane

Policies



Distributed authorization, solved ☑

Service

Users

Service Service Service Service

Data

Service

DataData

Identity 
system

Token/JWT JWT JWT

JWT
Token/JWT

JWT JWT

JSON Web Tokens

PermissionsPolicies



Distributed authorization solved!



Getting started
● Start small – write a few simple policies and tests.
● Browse the OPA documentation. Get a feel for the basics and the built-ins.
● Consider possible applications near to you - previous apps and libraries 

you’ve worked with. Consider the informal policies it dealt with.
● Delegate policy responsibilities to OPA. Again, start small! Perhaps a single 

endpoint to begin somewhere. Deploy and build experience.
● Scale up - management capabilities, logging, bundle server - Styra DAS!
● Styra Academy
● Join the OPA Slack community!

https://academy.styra.com/
https://slack.openpolicyagent.org/


Questions?



Thank you!


