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Problem:
How do we do authorization in 

distributed APIs?



Answer:
It’s complicated



The evolution of identity
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The evolution of identity
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● The application handles everything - including authentication and access control. The user 
authenticates in the application, a session is established, access control performed in code, 
commonly with a database serving permission data.

● In the distributed application, authentication is delegated elsewhere.

● But up until now, access control has remained pretty much the same,
in code, with a database serving permission data per request.

Monolith architecture
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The evolution of identity
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Slightly less naive monolith architecture using microservices

Rather than passing around credentials, we exchange them for tokens 



The evolution of identity
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Slightly less naive monolith architecture using microservices

Everyone wants a token!



The evolution of identity
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Slightly less naive monolith architecture using microservices

So.. how are these tokens obtained?
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OAuth2

Defines a set of flows for users (interactive flows) and clients (non-interactive) to authenticate 
at the authorization server in order to obtain access tokens for use as credentials to services.

Does not detail what an access token should look like.

Despite labeled an “authorization framework” provides little in terms of authorization - rather about 
delegation.

Scopes provide basic boundaries for where an access token may be used.

Commonly used for external identity providers, “social login”, etc.
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The evolution of identity
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JSON Web Tokens (JWTs)

A JWT is a signed self-contained collection of claims, i.e. attributes claimed to be true.

Tokens are created by an issuer. Claims often (but not always) provided by the backing identity provider.

Expiry time (and other standard attributes) of JWT included in payload.

JWTs are immutable - no claim may be changed without breaking signature verification.

JWTs are everywhere - libraries for both encoding and decoding available for all languages and platforms.



Distributed identity, solved ☑
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Great, now do authorization



The evolution of access control



Distributed Authorization?
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So, where should we do 
authorization?



Gateway Model
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● Fast!
● Single point of failure
● Insecure
● External dependency



Zero Trust Model
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Great, we’re back where we started
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How do we make it better?

● Slow
● Single point of failure
● Secure
● External dependency
● Authorization embedded in 

business logic
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● Open source general purpose policy engine

● Unified toolset and framework for policy across the stack

● Decouples policy from application logic

● Separates policy decision from enforcement

● Policies written in declarative language Rego

● Popular use cases ranging from kubernetes admission 

control, microservice authorization, infrastructure, data source 

filtering, to CI/CD pipeline policies and many more.
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Deployment model

● OPA runs as a lightweight self-contained server binary

● OPA ideally deployed as close to service as possible. This usually means running on the same host, 
either as a daemon or in a sidecar deployment

● Applications communicate with the OPA server through its REST API

● Go library available for Go applications

● Envoy/Istio based applications. Wasm, Intermediate Representation (IR), more...



Policy authoring and Rego
● Rego — declarative high-level policy language used by OPA.

● Policy consists of any number of rules.

● Rules commonly return true/false but may return any

type available in JSON, like strings, lists and objects.

● Policy testing is easy with provided unit test framework.

● Well documented! https://www.openpolicyagent.org/docs/latest/

● Try it out! https://play.openpolicyagent.org/

https://www.openpolicyagent.org/docs/latest/
https://play.openpolicyagent.org/
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Distributed authorization, solved ☑
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Distributed authorization solved!



Getting started
● Start small – write a few simple policies and tests.
● Browse the OPA documentation. Get a feel for the basics and the built-ins.
● Consider possible applications near to you - previous apps and libraries 

you’ve worked with. Consider the informal policies it dealt with.
● Delegate policy responsibilities to OPA. Again, start small! Perhaps a single 

endpoint to begin somewhere. Deploy and build experience.
● Scale up - management capabilities, logging, bundle server - Styra DAS!
● Styra Academy
● Join the OPA Slack community!

https://academy.styra.com/
https://slack.openpolicyagent.org/


Questions?



Thank you!


